—

Hewlett Packard
Enterprise

Georgia nsiitute
ot Technology

Improving Preemptive Scheduling with
Application-Transparent Checkpointing In

Shared Clusters

Jack Li, Calton Pu Yuan Chen, Vanish Talwar, Dejan Milojicic
Georgia Institute of Technology Hewlett Packard Labs

Shared Clusters for Big Data Systems

— Dynamic resource sharing across multiple frameworks, apps and users
— Examples - Google cluster (Omega), Mesos, Hadoop YARN, Bing’s Dryad

improved utilization and data sharing, reduced cost

N N)
||| |/
Batch (MR) Streaming In-l\/leml?ry Glrapr;] On||lne
Batch Streaming Online (Storm) (Spark) (Giraph) || (Vertica)
(MR) (Storm) (Vertica) —
Cluster Cluster Cluster (
Cluster Manager (e.g. YARN, Mesos)
- N~ J] I\ J
L Hardware AN Hardware AN Hardware) L Shared Hardware 1
Dedicated Clusters Shared Cluster

— S
Hewlett Packard %
Enterprise Cir 3

Preemption in Shared Clusters

— Coordinate resource sharing, guarantee QoS and
enforce fairness

€ | & 161-1.bfc.hpl.hp.com:10001 s simulate < | | QU Search

Queue allocated vcores

m gueue.sis_queue_ 1.allocate
m gueue.sils_queue_2 allocate

40
35+
30
25+
20+
15
10+

5,

(o]

Number

O 10 20 30 40 50 60 70 80 90 100 110
Time (secon d)

— Problem: preemption in shared clusters is expensive!
— Simply kill and restart jobs later
— Significant resource waste
— Delays completion time of long running or low priority jobs

—
Hewlett Packard
Enterprise

Real World Examples

29-day trace from Google: 672,000 jobs on 12,500 machines
Preemption Rate Timeline

S Task Priority Percent
@ Evicted
c 60
T 40 Free (0-1) 28.4M 20.26%
o
s 2 Middle (2-8) 17.3M 0.55%
E 0 AL Y Agn p | = AV AL
o 0 5 10 15 20 25 30 Production (9-11) 1.70M 1.02%
o Time [Day]
Many tasks preempted
Low Priority ——Medium Priority High Priority

Latency Num. of Percent

— Google Cluster: 12.4% of scheduled tasks il Tasks __ Evicted
preempted and up to 30k CPU-hours O (lowest) 37.4M 11.76%
(35% of total capacity) wasted! 1 594M 18.87%

— Microsoft Dryad cluster!ll: ~21% jobs killed |5 370M 8.14%

— Facebook Hadoop cluster!?l: repeatedly kill |3 (highest) 0.28M 14.80%
and restart long running jobs

— o Even latency-sensitive tasks are evicted

E::;&Sﬁszaward [1] Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. Ananthanarayanan et. al. EuroSys 2011.

[2] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.

Real World Examples
29-day trace from Google: 672,000 jobs on 12,500 machines

Preemption Frequency Distribution
1000

" Task Priority Num. of Percent
j‘(gg 800 Tasks Evicted
= S 600

=2 more than once 17% 10 times| Middle (2-8) 17.3M 0.55%
8= 200 or more ;

. X Production (9-11) 1.70M 1.02%

1 2 3 4 5 6 7 8 9 >10
Num. of Preemptions

Many tasks preempted

Latency Num. of Percent
— Google Cluster: 12.4% of scheduled tasks KNI Tasks __ Evicted
preempted and up to 30k CPU-hours O (lowest) 37.4M 11.76%
(35% of total capacity) wasted! 1 594M 18.87%
— Microsoft Dryad cluster!ll: ~21% jobs killed |5 370M 8.14%
— Facebook Hadoop cluster!?l: repeatedly kill |3 (highest) 0.28M 14.80%
and restart long running jobs

— - Even latency-sensitive tasks are evicted

E':;g}gﬁszaCkard [1] Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. Ananthanarayanan et. al. EuroSys 2011.
[2] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.

Checkpointing-based Preemptive Scheduling

— Linux CRIU (Checkpoint-Restore In Userspace)
— Distributed and remote checkpoint/restart

— Store checkpoints on NVM (NVMFES or NVRAM)

— Combine checkpoint and kill, local and remote checkpointing/resumption
— Incremental checkpointing with memory trackers

— -3
Hewlett Packard %
Enterprise G

Application-transparent Suspend-Resume
Checkpointing using CRIU (C R In U)

— Freeze a running program and suspend it in memory or output to disk
— Saves sockets, threads, namespaces, memory mappings, pipes

— Build process tree from /proc/$pid/task/$tid/children and seize them with ptrace
— Collect VMA areas, file descriptor numbers, registers, etc... of each process

— Read process tree from file and start saved processes with clone() call
— New memory map created filled with checkpointed data

— -3
Hewlett Packard %
Enterprise Cir

Suspend-Resume with DFS and NVM

! Node A Vo Node B Vo Node C \
i process address i i process address i i process address i
: space : : : : :
— Save checkpoints on HDFS | R B |
| i) |
i X ' :
I) I
: [Restore |
//IP_ _______ | [__i— P — _is
i L checkpoint| | | checkpoint| !
— Use NVM as fast disk e | | e | |
— Save CRIU checkpoints in NVM- l i HDD, SSD, NVM i i HDD, SSD, NVM i i HDD, SSD, NVM i
based file systems (e.g, PMFS) R N e /
N Distributed File System ______________
— Use NVM as virtual memory NedeR . Nades . Wodec
(NVRAM) emspace | | |
— Copy checkpoints from DRAM to NVM Py A I e A
using memory operations DRAM 1 7H
memory copy 74
— Shadow buffer A I 7ann RyZ240 1
§ YA o
e e wmwg” @

. NVRAM " pistributed Shared NVRA

— -
Hewlett Packard ﬂ%
Enterprise Cir 8

Suspend and Restore Performance

600

a1
o
o

N
o
o

N
o
o

Total Dump Restore Time [s]
= w
o o
o o

—

Hewlett Packard

Enterprise

Local File System

—o0—0— —0— —e
2 4 6 8 10

Checkpoint Size [GB]

—e—HDD

L

SSD —e—NVM

HDFS
600

a1
o
o

N
o
o

N
o
o

Total Dump Restore Time [s]
= w
o o
o o

.000—0-0—'—"_'/.

0 2 4 6 8 10
Checkpoint Size [GB]

0

—e—HDD SSD —e—PMFS

Benefits of Incremental Checkpointing

Storage First Checkpoint Second Checkpoint
HDD 169.18s 15.34s

SSD 43.73s 4.08s

PMFS 2.92s 0.28s

— -3
Hewlett Packard %
Enterprise G

Google Trace-driven Simulation

Resource Wastage

3500
3000
2500

=N
g1 O
o O
o O

[core-hours]
=
o
o
o

500

Wasted CPU Capacity

o

High Priority Job Performance

Normalized Completion Time
H

rAewlett Fackara

Enterprise

= Pre

m Basi
m Basi
m Basi

Wait

—o—Kill

—e—Checkpoint

pt-Kill
HDD
SSD
NVM

I 6%

Preempt Method

2 3
Checkpoint Bandwidth (GB/s)

g

4

Energy Consumption

4100

5

Normalized Completion Time

Normalized Response

5%
{
H

Preempt Method

Low Priority Job Performance

1 2 3 4
Checkpoint Bandwidth (GB/s)

1.4
1.2

=

0.8

e 06
04

0.2

o

Normalized Power

Performance
23% l 6%
|II14O/I |I | ||
Lowest Medium Highest
Priority ~ Priority Priority
Energy Consumption
4
3.5
c 3
o
25
% 2
O 1
0.5
0

0 1 2 3 4 5
Checkpoint Bandwidth (GB/s)

11

Adaptive Policies and Optimization

Adaptive preemption dynamically selects victim tasks and preemption
mechanisms (checkpoint or kill) based on the progress of each task and its
checkpoint/restore overhead.

Adaptive resumption restores preempted jobs/tasks locally or remotely
according to their overheads and available resources.

Incremental checkpointing with memory trackers

— -3
Hewlett Packard %
Enterprise Cir

12

Adaptive Preemption Algorithms

Algorithm 1: Preemption Algorithm

Algorithm 2: Resumption Algorithm

size size
bwyrite bwreqd
candidate_victims = get_candidate_victims();
sort (candidate victims);
for Task t in candidate victims do
if t.progress > t.checkpoint_overhead then
if t.previous_checkpoint | = null then

| do_incremental_checkpoint(t);
else

| do_normal_checkpoint (t);
end
else
kill(t);
end

end

overheadpyy = + queue_timeqymy

S1zZe

o T queue_timeiocal
S1zZ€ Stze
bwpet bwyeqd
preempted_tasks = get_preempted_tasks();

for Task t in preempted_tasks do
if t.previous_checkpoint == null then
| restart_task(t);
else
if t.local_resume_overhead <=
t.remote_resume_overhead then
| do_local_resume(t);
else
| do_remote_resume (t);
end

end
end

overhead)peql =

overheadmmote = + queue—timeremote

— 2
Hewlett Packard %
Enterprise G

13

Performance Improvement with Adaptive

D
1 o I 0 8%
= 200 £ e 17%
= 0.8 0
= 0 0.8
g 0.6 55% £ 0.6
2 0.4 §
Q 4
@ 0.2 - 0
g X 0.2
N 0 N O.
g Lowest Priority Medium Prlorlty Highest Priority g 0
3 ®m Basic ®mAdaptive 2 Lowest Priority Medium Priority Highest Priority
L 3% 8% -0.5%

o
o

o
o))

o
N}

Hewlett Packard Lowest Priority Medium Priority Highest Priority
Enterprise 14

Normalized Response Time
o
o ENN

Implementation with Hadoop YARN

— Global resource scheduler
(ResourceManager)

— Submit ApplicationMasters (jobs) to RM
— Supports capacity and fair scheduling

— Comes standard with YARN
— Runs a shell command in a set of

containers in a distributed and
parallel manner

1. New
Job

YARN ApplicationMaster |2. Preemption| YARN Resource Manager
Application P ti Request
e aranreemption YARN Cluster Scheduler
Manager -
5. Container
3. SUSpend Request
6. Resume
YARN NodeManager | |3-Suspend | YARN NodeManager
q CRIU 6. Resume CRIU
A A
dumg restore dumg restore
4. Suspend Iaslk Task Jasik Task
Complete HDFS HDFS
HDD, SSD, NVM (PMFS) HDD, SSD, NVM (PMFS)
— -2
Hewlett Packard %
Enterprise Cir

Testbed and Experiment Setup

— 8 node Hadoop YARN cluster
— Dual socket Xeon 5650 CPU (6 cores/each)
— 96GB memory (48GB emulated NVM using PMFS)
— 500GB HDD (un-optimized)
— 120GB SSD
— 24 concurrent containers (1 CPU/2 GB memory)

— Workload
— Modeled after Facebook workload!!
— Mix of high/low priority jobs (7,000+ tasks)

[1] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.

— -3
Hewlett Packard %
Enterprise Cir 16

CPU Wastage

Comparison of Different Preemption Policies on
YARN

Resource Wastage Energy Consumption Average Job Performance
250 _ 16
= Kill S 14
_ 200 schfHOD = 8 35% E12 1(y
4 £ 10 0
é 150 67% SSD i 6 E 8
: lCh -NVM > © _220
9 100 S 4 o 6 22/0
o O c 4
O, o= o
o O
0 0 Low Priority High Pnonty
Basic Preemption CDF
1
0.75
—Kill
0.5 —Chk-HDD
0.25 ——Chk-SSD
0 —Chk-NVM
—
Hewlett Packard cﬁ 0 5 10 15 20 25 30
Enterprise Response Time [min] 17

Response Time [min]

Benefits of Adaptive Preemption

HDD SSD
14 — 8
12 =7
10 28% Eg 16%0
6 [
4
c
2 o
0 a2
o 1
Low Priority High Priority x 5
m Basic mAdaptive Low Priority
NVM
20%

—
Hewlett Packard y
Enterprise Low Priority High Priority

Response Time [min]
O P N W b 01 O N

/%

High Priority

18

Overhead of Checkpoint-based Preemption

CPU overhead is negligible, but I/O overhead is significant on slow storage

100
90
80
70
60
50
40
30
20
10

CPU Overhead [%]

—

Hewlett Packard

Enterprise

CPU Overhead

I [[- o
HDD SSD NVM

m Basic mAdaptive

L

I/O Overhead [%0]

100
90
80
70
60
50
40
30
20
10

o

/O Overhead

HDD SSD NVM

m Basic mAdaptive

19

Conclusion and Future Work

— Preemption in shared clusters is expensive and preemption using
application-transparent checkpointing is able to improve resource
efficiency and overall application performance.

— Adaptive preemption that combines checkpoint and kill can further
Improve the performance and reduce the preemption cost.

— By leveraging emerging fast storage technologies such as NVM,
even more savings can be achieved.

— A wide range of applications
— Checkpointing with NVRAM
— Integration with other cluster scheduling policies

— -3
Hewlett Packard %
Enterprise G

20

Thank you

Contact:

 m—

Hewlett Packard %
Enterprise G~

21

mailto:jack.li@cc.gatech.edu
mailto:yuan.chen@hpe.com

