
Improving Preemptive Scheduling with
Application-Transparent Checkpointing in
Shared Clusters

Jack Li, Calton Pu

Georgia Institute of Technology

Yuan Chen, Vanish Talwar, Dejan Milojicic

Hewlett Packard Labs

Shared Clusters for Big Data Systems

– Dynamic resource sharing across multiple frameworks, apps and users

– Examples - Google cluster (Omega), Mesos, Hadoop YARN, Bing’s Dryad

Dedicated Clusters Shared Cluster

improved utilization and data sharing, reduced cost

3

Shared Hardware

Cluster Manager (e.g. YARN, Mesos)

Batch (MR)
Streaming

(Storm)

In-Memory

(Spark)

Graph

(Giraph)

Online

(Vertica)

Hardware

Batch

(MR)

Cluster

Hardware

Streaming

(Storm)

Cluster

Hardware

Online

(Vertica)

Cluster

Preemption in Shared Clusters

– Coordinate resource sharing, guarantee QoS and
enforce fairness

– Problem: preemption in shared clusters is expensive!
– Simply kill and restart jobs later

– Significant resource waste

– Delays completion time of long running or low priority jobs

3

preemption

Real World Examples

– Google Cluster: 12.4% of scheduled tasks
preempted and up to 30k CPU-hours
(35% of total capacity) wasted!

– Microsoft Dryad cluster[1]: ~21% jobs killed

– Facebook Hadoop cluster[2]: repeatedly kill
and restart long running jobs

4

Task Priority Num. of

Tasks

Percent

Evicted

Free (0-1) 28.4M 20.26%

Middle (2-8) 17.3M 0.55%

Production (9-11) 1.70M 1.02%

Latency

Sensitivity

Num. of

Tasks

Percent

Evicted

0 (lowest) 37.4M 11.76%

1 5.94M 18.87%

2 3.70M 8.14%

3 (highest) 0.28M 14.80%

Even latency-sensitive tasks are evicted

29-day trace from Google: 672,000 jobs on 12,500 machines

0

20

40

60

80

100

0 5 10 15 20 25 30

P
re

e
m

p
ti

o
n

 R
a

te
 [

%
]

Time [Day]

Preemption Rate Timeline

Low Priority Medium Priority High Priority

[1] Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. Ananthanarayanan et. al. EuroSys 2011.

[2] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.

Many tasks preempted

Real World Examples

– Google Cluster: 12.4% of scheduled tasks
preempted and up to 30k CPU-hours
(35% of total capacity) wasted!

– Microsoft Dryad cluster[1]: ~21% jobs killed

– Facebook Hadoop cluster[2]: repeatedly kill
and restart long running jobs

5

Task Priority Num. of

Tasks

Percent

Evicted

Free (0-1) 28.4M 20.26%

Middle (2-8) 17.3M 0.55%

Production (9-11) 1.70M 1.02%

Latency

Sensitivity

Num. of

Tasks

Percent

Evicted

0 (lowest) 37.4M 11.76%

1 5.94M 18.87%

2 3.70M 8.14%

3 (highest) 0.28M 14.80%

Even latency-sensitive tasks are evicted

29-day trace from Google: 672,000 jobs on 12,500 machines

0

20

40

60

80

100

0 5 10 15 20 25 30

P
re

e
m

p
ti

o
n

 R
a

te
 [

%
]

Time [Day]

Preemption Rate Timeline

Low Priority Medium Priority High Priority

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 >10

D
is

ti
n

c
t

T
a

s
k

s

[t
h

o
u

s
a

n
d

s
]

Num. of Preemptions

Preemption Frequency Distribution

[1] Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. Ananthanarayanan et. al. EuroSys 2011.

[2] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.

Many tasks preempted

43% preempted
more than once 17% 10 times

or more

Checkpointing-based Preemptive Scheduling

Our solution: use checkpoint/restore for preemption
instead of kill/restart

Use system level, application-transparent checkpointing mechanism

– Linux CRIU (Checkpoint-Restore In Userspace)

– Distributed and remote checkpoint/restart

Leverage fast storage such as NVM for efficient checkpointing

– Store checkpoints on NVM (NVMFS or NVRAM)

Adaptive preemption policies and optimization techniques

– Combine checkpoint and kill, local and remote checkpointing/resumption

– Incremental checkpointing with memory trackers

6

Application-transparent Suspend-Resume
Checkpointing using CRIU (Checkpoint/Restore In Userspace)

– Freeze a running program and suspend it in memory or output to disk

– Saves sockets, threads, namespaces, memory mappings, pipes

Dump

– Build process tree from /proc/$pid/task/$tid/children and seize them with ptrace

– Collect VMA areas, file descriptor numbers, registers, etc… of each process

Restore

– Read process tree from file and start saved processes with clone() call

– New memory map created filled with checkpointed data

7

Suspend-Resume with DFS and NVM

Support distributed and remote
checkpoint-resume

– Save checkpoints on HDFS

Checkpoint with NVM

– Use NVM as fast disk

– Save CRIU checkpoints in NVM-
based file systems (e.g, PMFS)

– Use NVM as virtual memory
(NVRAM)

– Copy checkpoints from DRAM to NVM
using memory operations

– Shadow buffer

Incremental checkpointing

8

Node A Node B Node C

NVRAM NVRAM

Distributed Shared NVRAM

process
address space

DRAM

DRAM DRAM

NVRAM

memory copy

Node A

process address

space

HDD, SSD, NVM

DRAM

checkpoint

files

Dump

Node B

process address

space

HDD, SSD, NVM

DRAM

checkpoint

files

Node C

process address

space

HDD, SSD, NVM

DRAM

checkpoint

files

Restore

Distributed File System

Suspend and Restore Performance

9

0

100

200

300

400

500

600

0 2 4 6 8 10

T
o
ta

l
D

u
m

p
 R

e
s
to

re
 T

im
e
 [
s
]

Checkpoint Size [GB]

Local File System

HDD SSD NVM

0

100

200

300

400

500

600

0 2 4 6 8 10

T
o

ta
l
D

u
m

p
 R

e
s
to

re
 T

im
e

 [
s
]

Checkpoint Size [GB]

HDFS

HDD SSD PMFS

Benefits of Incremental Checkpointing

5GB initial dump size, change 10% of the memory and dump again

10

Storage First Checkpoint Second Checkpoint

HDD 169.18s 15.34s

SSD 43.73s 4.08s

PMFS 2.92s 0.28s

Google Trace-driven Simulation

11

0

500

1000

1500

2000

2500

3000

3500

W
a
s
te

d
 C

P
U

 C
a
p
a
c
it
y

[c
o

re
-h

o
u

rs
]

Preempt Method

Resource Wastage

Preempt-Kill

Basic-HDD

Basic-SSD

Basic-NVM

3800

3850

3900

3950

4000

4050

4100

E
n

e
rg

y
 [

k
W

*h
)

Preempt Method

Energy Consumption

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lowest
Priority

Medium
Priority

Highest
Priority

N
o

rm
a

liz
e

d
 R

e
s
p

o
n

s
e

T

im
e

Performance

0

1

2

3

4

5

6

0 1 2 3 4 5

N
o

rm
a

liz
e

d
 C

o
m

p
le

ti
o

n
 T

im
e

Checkpoint Bandwidth (GB/s)

Low Priority Job Performance

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

N
o

rm
a

liz
e

d
 C

o
m

p
le

ti
o

n
 T

im
e

Checkpoint Bandwidth (GB/s)

High Priority Job Performance

Wait

Kill

Checkpoint

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5

N
o
rm

a
liz

e
d

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

Checkpoint Bandwidth (GB/s)

Energy Consumption

23% -6%

76% 5% 74%

Adaptive Policies and Optimization

Adaptive preemption dynamically selects victim tasks and preemption

mechanisms (checkpoint or kill) based on the progress of each task and its

checkpoint/restore overhead.

Adaptive resumption restores preempted jobs/tasks locally or remotely

according to their overheads and available resources.

Incremental checkpointing with memory trackers

12

Adaptive Preemption Algorithms

13

Performance Improvement with Adaptive
Policies

14

0

0.2

0.4

0.6

0.8

1

Lowest Priority Medium Priority Highest Priority

N
o
rm

a
liz

e
d

 R
e
s
p

o
n

s
e

 T
im

e

HDD

Basic Adaptive
0

0.2

0.4

0.6

0.8

1

Lowest Priority Medium Priority Highest PriorityN
o

rm
a

liz
e

d
 R

e
s
p

o
n

s
e

 T
im

e

SSD

0

0.2

0.4

0.6

0.8

1

Lowest Priority Medium Priority Highest PriorityN
o

rm
a

liz
e

d
 R

e
s
p

o
n

s
e

 T
im

e

NVM

36%
55%

29%
12% 17%

8%

3% 8%
-0.5%

Implementation with Hadoop YARN

YARN – cluster resource manager

– Global resource scheduler
(ResourceManager)

– Submit ApplicationMasters (jobs) to RM

– Supports capacity and fair scheduling

DistributedShell

– Comes standard with YARN

– Runs a shell command in a set of
containers in a distributed and
parallel manner

15

YARN ApplicationMaster

Application Preemption
Manager

2. Preemption
Request

3. Suspend
6. Resume

3. Suspend
6. Resume

4. Suspend
Complete

YARN Resource Manager

YARN Cluster Scheduler

5. Container
Request

YARN NodeManager

HDD, SSD, NVM (PMFS)

HDFS

Task

CRIU

Task

dump restore

YARN NodeManager

HDD, SSD, NVM (PMFS)

HDFS

Task

CRIU

Task

dump restore

1. New
Job

Testbed and Experiment Setup

– 8 node Hadoop YARN cluster

– Dual socket Xeon 5650 CPU (6 cores/each)

– 96GB memory (48GB emulated NVM using PMFS)

– 500GB HDD (un-optimized)

– 120GB SSD

– 24 concurrent containers (1 CPU/2 GB memory)

– Workload

– Modeled after Facebook workload[1]

– Mix of high/low priority jobs (7,000+ tasks)

16

[1] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.

Comparison of Different Preemption Policies on
YARN

17

0

50

100

150

200

250

C
P

U
 W

a
s
ta

g
e

[c
o

re
-h

o
u

rs
]

Resource Wastage

Kill

Chk-HDD

Chk-SSD

Chk-NVM

0

2

4

6

8

10

E
n

e
rg

y
 [

k
W

*h
]

Energy Consumption

0
2
4
6
8

10
12
14
16

Low Priority High Priority

R
e

s
p

o
n

s
e

 T
im

e
 [
m

in
]

Average Job Performance

0

0.25

0.5

0.75

1

0 5 10 15 20 25 30

Response Time [min]

Basic Preemption CDF

Kill

Chk-HDD

Chk-SSD

Chk-NVM

-22%

61%
35%

67%

Benefits of Adaptive Preemption

18

0
2
4
6
8

10
12
14

Low Priority High PriorityR
e

s
p

o
n

s
e

 T
im

e
 [
m

in
]

HDD

Basic Adaptive
0

1

2

3

4

5

6

7

8

Low Priority High Priority

R
e

s
p

o
n

s
e

 T
im

e
 [
m

in
]

SSD

0

1

2

3

4

5

6

7

Low Priority High Priority

R
e

s
p

o
n

s
e

 T
im

e
 [
m

in
]

NVM

28%
7%

16%
7%

20%
14%

Overhead of Checkpoint-based Preemption

CPU overhead is negligible, but I/O overhead is significant on slow storage

19

0

10

20

30

40

50

60

70

80

90

100

HDD SSD NVM

C
P

U
 O

v
e
rh

e
a
d
 [

%
]

CPU Overhead

Basic Adaptive

0

10

20

30

40

50

60

70

80

90

100

HDD SSD NVM

I/
O

 O
v
e

rh
e

a
d

 [
%

]

I/O Overhead

Basic Adaptive

Conclusion and Future Work

– Preemption in shared clusters is expensive and preemption using
application-transparent checkpointing is able to improve resource
efficiency and overall application performance.

– Adaptive preemption that combines checkpoint and kill can further
improve the performance and reduce the preemption cost.

– By leveraging emerging fast storage technologies such as NVM,
even more savings can be achieved.

Future Work

– A wide range of applications

– Checkpointing with NVRAM

– Integration with other cluster scheduling policies

20

Thank you

Contact: jack.li@cc.gatech.edu
yuan.chen@hpe.com

21

mailto:jack.li@cc.gatech.edu
mailto:yuan.chen@hpe.com

