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Shared Clusters for Big Data Systems

— Dynamic resource sharing across multiple frameworks, apps and users
— Examples - Google cluster (Omega), Mesos, Hadoop YARN, Bing’s Dryad

improved utilization and data sharing, reduced cost
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Preemption in Shared Clusters

— Coordinate resource sharing, guarantee QoS and
enforce fairness
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— Problem: preemption in shared clusters is expensive!
— Simply kill and restart jobs later
— Significant resource waste
— Delays completion time of long running or low priority jobs
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Real World Examples

29-day trace from Google: 672,000 jobs on 12,500 machines
Preemption Rate Timeline
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— Google Cluster: 12.4% of scheduled tasks il Tasks __ Evicted
preempted and up to 30k CPU-hours O (lowest) 37.4M  11.76%
(35% of total capacity) wasted! 1 594M  18.87%

— Microsoft Dryad cluster!ll: ~21% jobs killed |5 370M  8.14%

— Facebook Hadoop cluster!?l: repeatedly kill |3 (highest) 0.28M  14.80%
and restart long running jobs

— o Even latency-sensitive tasks are evicted

E::;&Sﬁszaward [1] Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. Ananthanarayanan et. al. EuroSys 2011.

[2] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.



Real World Examples
29-day trace from Google: 672,000 jobs on 12,500 machines
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— Google Cluster: 12.4% of scheduled tasks KNI Tasks __ Evicted
preempted and up to 30k CPU-hours O (lowest) 37.4M  11.76%
(35% of total capacity) wasted! 1 594M  18.87%
— Microsoft Dryad cluster!ll: ~21% jobs killed |5 370M  8.14%
— Facebook Hadoop cluster!?l: repeatedly kill |3 (highest) 0.28M  14.80%
and restart long running jobs

— - Even latency-sensitive tasks are evicted

E':;g}gﬁszaCkard [1] Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. Ananthanarayanan et. al. EuroSys 2011.
[2] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.



Checkpointing-based Preemptive Scheduling

— Linux CRIU (Checkpoint-Restore In Userspace)
— Distributed and remote checkpoint/restart

— Store checkpoints on NVM (NVMFES or NVRAM)

— Combine checkpoint and kill, local and remote checkpointing/resumption
— Incremental checkpointing with memory trackers
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Application-transparent Suspend-Resume
Checkpointing using CRIU (C R In U )

— Freeze a running program and suspend it in memory or output to disk
— Saves sockets, threads, namespaces, memory mappings, pipes

— Build process tree from /proc/$pid/task/$tid/children and seize them with ptrace
— Collect VMA areas, file descriptor numbers, registers, etc... of each process

— Read process tree from file and start saved processes with clone() call
— New memory map created filled with checkpointed data
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Suspend-Resume with DFS and NVM
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Suspend and Restore Performance
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Benefits of Incremental Checkpointing

Storage First Checkpoint Second Checkpoint
HDD 169.18s 15.34s

SSD 43.73s 4.08s

PMFS 2.92s 0.28s
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Google Trace-driven Simulation

Resource Wastage
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Adaptive Policies and Optimization

Adaptive preemption dynamically selects victim tasks and preemption
mechanisms (checkpoint or kill) based on the progress of each task and its
checkpoint/restore overhead.

Adaptive resumption restores preempted jobs/tasks locally or remotely
according to their overheads and available resources.

Incremental checkpointing with memory trackers
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Adaptive Preemption Algorithms

Algorithm 1: Preemption Algorithm

Algorithm 2: Resumption Algorithm

size size
bwyrite bwreqd
candidate_victims = get_candidate_victims();
sort (candidate victims);
for Task t in candidate victims do
if t.progress > t.checkpoint_overhead then
if t.previous_checkpoint | = null then

| do_incremental_checkpoint(t);
else

| do_normal_checkpoint (t);
end
else
kill(t);
end

end

overheadpyy = + queue_timeqymy

S1zZe

o T queue_timeiocal
S1zZ€ Stze
bwpet bwyeqd
preempted_tasks = get_preempted_tasks();

for Task t in preempted_tasks do
if t.previous_checkpoint == null then
| restart_task(t);
else
if t.local_resume_overhead <=
t.remote_resume_overhead then
| do_local_resume(t);
else
| do_remote_resume (t);
end

end
end

overhead)peql =

overheadmmote = + queue—timeremote
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Performance Improvement with Adaptive
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Implementation with Hadoop YARN

— Global resource scheduler
(ResourceManager)

— Submit ApplicationMasters (jobs) to RM
— Supports capacity and fair scheduling

— Comes standard with YARN
— Runs a shell command in a set of

containers in a distributed and
parallel manner

1. New
Job

YARN ApplicationMaster |2. Preemption| YARN Resource Manager
Application P ti Request
e aranreemption YARN Cluster Scheduler
Manager -
5. Container
3. SUSpend Request
6. Resume
YARN NodeManager | |3-Suspend | YARN NodeManager
q CRIU 6. Resume CRIU
A A
dumg restore dumg restore
4. Suspend Iaslk Task Jasik Task
Complete HDFS HDFS
HDD, SSD, NVM (PMFS) HDD, SSD, NVM (PMFS)
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Testbed and Experiment Setup

— 8 node Hadoop YARN cluster
— Dual socket Xeon 5650 CPU (6 cores/each)
— 96GB memory (48GB emulated NVM using PMFS)
— 500GB HDD (un-optimized)
— 120GB SSD
— 24 concurrent containers (1 CPU/2 GB memory)

— Workload
— Modeled after Facebook workload!!
— Mix of high/low priority jobs (7,000+ tasks)

[1] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.
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CPU Wastage

Comparison of Different Preemption Policies on
YARN
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Response Time [min]

Benefits of Adaptive Preemption

HDD SSD
14 — 8
12 =7
10 28% Eg 16%0
6 [
4
c
2 o
0 a2
o 1
Low Priority High Priority x 5
m Basic mAdaptive Low Priority
NVM
20%

—
Hewlett Packard y
Enterprise Low Priority High Priority

Response Time [min]
O P N W b 01 O N

/%

High Priority

18



Overhead of Checkpoint-based Preemption

CPU overhead is negligible, but I/O overhead is significant on slow storage
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Conclusion and Future Work

— Preemption in shared clusters is expensive and preemption using
application-transparent checkpointing is able to improve resource
efficiency and overall application performance.

— Adaptive preemption that combines checkpoint and kill can further
Improve the performance and reduce the preemption cost.

— By leveraging emerging fast storage technologies such as NVM,
even more savings can be achieved.

— A wide range of applications
— Checkpointing with NVRAM
— Integration with other cluster scheduling policies
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Thank you
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