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Shared Clusters for Big Data Systems

– Dynamic resource sharing across multiple frameworks, apps and users

– Examples - Google cluster (Omega), Mesos, Hadoop YARN, Bing’s Dryad

Dedicated Clusters Shared Cluster

improved utilization and data sharing, reduced cost
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Preemption in Shared Clusters

– Coordinate resource sharing, guarantee QoS and 
enforce fairness

– Problem: preemption in shared clusters is expensive!
– Simply kill and restart jobs later

– Significant resource waste

– Delays completion time of long running or low priority jobs
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Real World Examples

– Google Cluster: 12.4% of scheduled tasks 
preempted  and up to 30k CPU-hours 
(35% of total capacity) wasted!

– Microsoft Dryad cluster[1]: ~21% jobs killed

– Facebook Hadoop cluster[2]: repeatedly kill 
and restart long running jobs
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Task Priority Num. of 

Tasks

Percent 

Evicted

Free (0-1) 28.4M 20.26%

Middle (2-8) 17.3M 0.55%

Production (9-11) 1.70M 1.02%

Latency 

Sensitivity

Num. of 

Tasks

Percent 

Evicted

0 (lowest) 37.4M 11.76%

1 5.94M 18.87%

2 3.70M 8.14%

3 (highest) 0.28M 14.80%

Even latency-sensitive tasks are evicted

29-day trace from Google: 672,000 jobs on 12,500 machines
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[1] Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. Ananthanarayanan et. al. EuroSys 2011.

[2] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.

Many tasks preempted



Real World Examples

– Google Cluster: 12.4% of scheduled tasks 
preempted  and up to 30k CPU-hours 
(35% of total capacity) wasted!

– Microsoft Dryad cluster[1]: ~21% jobs killed

– Facebook Hadoop cluster[2]: repeatedly kill 
and restart long running jobs

5

Task Priority Num. of 

Tasks

Percent 

Evicted

Free (0-1) 28.4M 20.26%

Middle (2-8) 17.3M 0.55%

Production (9-11) 1.70M 1.02%

Latency 

Sensitivity

Num. of 

Tasks

Percent 

Evicted

0 (lowest) 37.4M 11.76%

1 5.94M 18.87%

2 3.70M 8.14%

3 (highest) 0.28M 14.80%

Even latency-sensitive tasks are evicted

29-day trace from Google: 672,000 jobs on 12,500 machines

0

20

40

60

80

100

0 5 10 15 20 25 30

P
re

e
m

p
ti

o
n

 R
a

te
 [

%
]

Time [Day]

Preemption Rate Timeline

Low Priority Medium Priority High Priority

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 >10

D
is

ti
n

c
t 

T
a

s
k

s
 

[t
h

o
u

s
a

n
d

s
]

Num. of Preemptions

Preemption Frequency Distribution

[1] Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters. Ananthanarayanan et. al. EuroSys 2011.

[2] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.

Many tasks preempted

43% preempted 
more than once 17% 10 times 

or more



Checkpointing-based Preemptive Scheduling

Our solution: use checkpoint/restore for preemption 
instead of kill/restart

Use system level, application-transparent checkpointing mechanism

– Linux CRIU (Checkpoint-Restore In Userspace)

– Distributed and remote checkpoint/restart

Leverage fast storage such as NVM for efficient checkpointing

– Store checkpoints on NVM (NVMFS or NVRAM)

Adaptive preemption policies and optimization techniques

– Combine checkpoint and kill, local and remote checkpointing/resumption

– Incremental checkpointing with memory trackers

6



Application-transparent Suspend-Resume
Checkpointing using CRIU (Checkpoint/Restore In Userspace)

– Freeze a running program and suspend it in memory or output to disk

– Saves sockets, threads, namespaces, memory mappings, pipes

Dump

– Build process tree from /proc/$pid/task/$tid/children and seize them with ptrace

– Collect VMA areas, file descriptor numbers, registers, etc… of each process

Restore

– Read process tree from file and start saved processes with clone() call

– New memory map created filled with checkpointed data
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Suspend-Resume with DFS and NVM

Support distributed and remote 
checkpoint-resume

– Save checkpoints on HDFS

Checkpoint with NVM

– Use NVM as fast disk 

– Save CRIU checkpoints in NVM-
based file systems (e.g, PMFS)

– Use NVM as virtual memory 
(NVRAM)

– Copy checkpoints from DRAM to NVM 
using memory operations

– Shadow buffer

Incremental checkpointing
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Suspend and Restore Performance
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Benefits of Incremental Checkpointing

5GB initial dump size, change 10% of the memory and dump again
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Storage First Checkpoint Second Checkpoint

HDD 169.18s 15.34s

SSD 43.73s 4.08s

PMFS 2.92s 0.28s



Google Trace-driven Simulation
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Adaptive Policies and Optimization

Adaptive preemption dynamically selects victim tasks and preemption 

mechanisms (checkpoint or kill) based on the progress of each task and its 

checkpoint/restore overhead.

Adaptive resumption restores preempted jobs/tasks locally or remotely 

according to their overheads and available resources.

Incremental checkpointing with memory trackers
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Adaptive Preemption Algorithms
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Performance Improvement with Adaptive 
Policies
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Implementation with Hadoop YARN

YARN – cluster resource manager

– Global resource scheduler 
(ResourceManager)

– Submit ApplicationMasters (jobs) to RM

– Supports capacity and fair scheduling

DistributedShell

– Comes standard with YARN

– Runs a shell command in a set of 
containers in a distributed and 
parallel manner
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Testbed and Experiment Setup

– 8 node Hadoop YARN cluster

– Dual socket Xeon 5650 CPU (6 cores/each)

– 96GB memory (48GB emulated NVM using PMFS)

– 500GB HDD (un-optimized)

– 120GB SSD

– 24 concurrent containers (1 CPU/2 GB memory)

– Workload

– Modeled after Facebook workload[1]

– Mix of high/low priority jobs (7,000+ tasks)
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[1] Mitigating the Negative Impact of Preemption on Heterogeneous MapReduce Workloads. Cheng et. al. CNSM 2011.



Comparison of Different Preemption Policies on 
YARN
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Benefits of Adaptive Preemption
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Overhead of Checkpoint-based Preemption

CPU overhead is negligible, but I/O overhead is significant on slow storage
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Conclusion and Future Work

– Preemption in shared clusters is expensive and preemption using 
application-transparent checkpointing is able to improve resource 
efficiency and overall application performance. 

– Adaptive preemption that combines checkpoint and kill can further 
improve the performance and reduce the preemption cost. 

– By leveraging emerging fast storage technologies such as NVM, 
even more savings can be achieved.

Future Work

– A wide range of applications

– Checkpointing with NVRAM

– Integration with other cluster scheduling policies
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Thank you

Contact: jack.li@cc.gatech.edu
yuan.chen@hpe.com
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