
Detecting Transient Bottlenecks in n-Tier
Applications through Fine-Grained Analysis

Qingyang Wang 1, Yasuhiko Kanemasa 2, Jack Li 1, Deepal Jayasinghe 1

Toshihiro Shimizu 2, Masazumi Matsubara 2, Motoyuki Kawaba 2, Calton Pu 1

1College of Computing, Georgia Institute of Technology
2Cloud Computing Research Center, FUJITSU LABORATORIES LTD.

Abstract—Identifying the location of performance bottlenecks
is a non-trivial challenge when scaling n-tier applications in
computing clouds. Specifically, we observed that an n-tier applica-
tion may experience significant performance loss when there are
transient bottlenecks in component servers. Such transient bottle-
necks arise frequently at high resource utilization and often result
from transient events (e.g., JVM garbage collection) in an n-tier
system and bursty workloads. Because of their short lifespan (e.g.,
milliseconds), these transient bottlenecks are difficult to detect
using current system monitoring tools with sampling at intervals
of seconds or minutes. We describe a novel transient bottleneck
detection method that correlates throughput (i.e., request service
rate) and load (i.e., number of concurrent requests) of each server
in an n-tier system at fine time granularity. Both throughput
and load can be measured through passive network tracing at
millisecond-level time granularity. Using correlation analysis, we
can identify the transient bottlenecks at time granularities as
short as 50ms. We validate our method experimentally through
two case studies on transient bottlenecks caused by factors at
the system software layer (e.g., JVM garbage collection) and
architecture layer (e.g., Intel SpeedStep).

I. INTRODUCTION

Achieving both good performance and high resource utiliza-
tion is an important goal for enterprise cloud environments.
High utilization is essential for high return on investment
for cloud providers and low sharing cost for cloud users.
Good performance is essential for mission-critical applica-
tions (e.g., web-facing e-commerce applications) with Service
Level Agreement (SLA) guarantees such as bounded response
time. Unfortunately, achieving both objectives for mission-
critical applications has remained an elusive goal. Concretely,
both practitioners and researchers have experienced wide-
range response time variations in clouds during periods of
high utilization. A practical consequence is that enterprise
cloud environments have adopted conservative (low) average
utilization (e.g., 18% in [19]).

In this paper, we describe clear experimental evidence that
shows transient bottlenecks being an important contributing
factor to the wide response time variations. Using extensive
measurements of an n-tier benchmark (RUBBoS [1]), we
demonstrate the presence of transient bottlenecks with a short
lifespan on the order of tens of milliseconds. Transient bottle-
necks can arise from several factors at different system layers
such as Java Virtual machine garbage collection (JVM GC)

at the software layer and Intel SpeedStep at the architecture
layer. These factors interact with normal bursty workloads [14]
from clients, often leading to transient bottlenecks that cause
overall performance degradation. The discovery of these tran-
sient bottlenecks is important as they will cause wide-range
response time variations and limit the overall system perfor-
mance while all the system resources are less than 100%
utilized. Specifically, we have found that frequent transient
bottlenecks can cause a long-tail response time distribution
that spans a spectrum of 2 to 3 orders of magnitude, which can
lead to severe violations of strict Service Level Agreements
(SLAs) required by web-facing e-commerce applications (see
Section II-B).

The study of transient bottlenecks has been hampered due to
many transient bottlenecks being short-lived (on the order of
tens of milliseconds). From Sampling Theory, these transient
bottlenecks would not be detectable by normal monitoring
tools that sample at time intervals measured in seconds or
minutes. These monitoring tools incur very high overhead
at sub-second sampling intervals (about 6% CPU utilization
overhead at 100ms interval and 12% at 20ms interval). By
combining fine-grained monitoring tools and a sophisticated
analytical method to generate and analyze monitoring data,
we are able to find and study transient bottlenecks.

The first contribution of this paper is a novel transient
bottleneck detection method, which is sensitive enough to
detect transient bottlenecks at millisecond level. Our method
uses passive network packet tracing, which monitors the
arrival and departure time of each request of each server
at microsecond granularity with negligible impact on the
servers. This data supports the counting of concurrent requests
and completed requests at fine time granularity (e.g., 50ms).
For sufficiently short time intervals, we can use the server
request completion rate as throughput, and concurrent requests
as server load, to identify transient performance bottlenecks
(Utilization Law [9]) at time granularity as short as 50ms (See
Section III).

The second contribution of the paper is a detailed study
of various system factors that cause the transient bottlenecks
in the system. In this paper we focus on two representative
factors: one at the system software layer and the other at the
architecture layer. At the system software layer, JVM garbage

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.17

105

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.17

31

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.17

31

Web Server
Application Server
Cluster middleware

Software Stack
Apache 2.0.54
Apache Tomcat 5.5.17
C-JDBC 2.0.2

System monitor esxtop 5.0, Sysstat 10.0.0

Database server MySQL 5.0.51a

Operating system RHEL 6.2 (kernel 2.6.32)
Sun JDK jdk1.5.0_07, jdk1.6.0_14

Hypervisor VMware ESXi v5.0

(a) Software setup (b) ESXi host and VM setup

CPU0

CPU0

Web
Server

App.
Servers

Cluster-
middle-
ware

DB
Servers

L L
S

ESXi
Host 1

ESXi
Host 2

ESXi
Host 3

ESXi
Host 4

VM

HTTP
Requests

CPU0

CPU1

CPU1

CPU0

S

CPU1

S S
CPU1

(c) 1L/2S/1L/2S sample topology

Fig. 1: Details of the experimental setup.

collections in a Java-based server happen frequently especially
when the server is at high resource utilization and cause
frequent transient bottlenecks for the server (see Section IV-A).
At the architecture layer, the Intel SpeedStep technology
unintentionally creates frequent transient bottlenecks due to
the mismatch between the current CPU clock speed and the
bursty real-time workload on the server (See Section IV-C).

The rest of the paper is organized as follows. Section II
shows the wide-range response time variations using a con-
crete example. Section III introduce our transient bottleneck
detection method. Section IV shows two case studies of apply-
ing our method to transient bottlenecks. Section V summarizes
the related work and Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Experimental Setup

We adopt the RUBBoS standard n-tier benchmark, based
on bulletin board applications such as Slashdot [1]. RUBBoS
can be configured as a three-tier (web server, application
server, and database server) or four-tier (addition of clustering
middleware such as C-JDBC [11]) system. The workload
consists of 24 different interactions. The benchmark includes
two kinds of workload modes: browse-only and read/write
mixes. We use browse-only workload in this paper.

We run the RUBBoS benchmark on our virtualized testbed.
Figure 1 outlines the software components, ESXi host and
virtual machine (VM) configuration, and a sample topol-
ogy used in the experiments. We use a four-digit notation
#W/#A/#C/#D to denote the number of web servers, ap-
plication servers, clustering middleware servers, and database
servers. Each server runs on top of one VM. We have two types
of VMs: “L” and “S”, each of which represents a different size
of processing power. Figure 1(c) shows a sample 1L/2S/1L/2S
topology. The VMs from the same tier of the application run
in the same ESXi host. Each VM from the same tier is pinned
to separate CPU cores to minimize the interference between
VMs. Hardware resource utilization measurements (e.g., CPU)
are taken during the runtime period using Sysstat at one second
granularity and VMware esxtop at two second granularity.

B. Why Are Transient Bottlenecks a Problem?

We use an example where the response time of an n-tier
system presents wide-range variations while the system is far

from saturation. The example was derived from a three-minute
experiment of RUBBoS running on a four-tier configuration
(1L/2S/1L/2S, see Figure 1(c)).

Figure 2(a) shows the system throughput increases linearly
from a workload of 1,000 concurrent users to 11,000, but after
11,000, the throughput becomes flat and the average response
time increases dramatically. The interesting observation is that
before the throughput reaches the maximum, for example,
from WL 6,000 to 11,000, the average response time already
starts increasing. In particular, Figure 2(b) shows that the
percentage of requests with response time over 2s starts
increasing after WL 6,000, which means that the system per-
formance starts deteriorating far before the system reaches the
maximum throughput. Figure 2(c) further shows the response
time distribution of the system at WL 8,000, which presents
a clear long-tail and bi-modal distribution. In real business
situations, there are often cases when web-facing applications
have strict service level agreements (SLAs) in terms of end-to-
end response time; for example, experiments at Amazon show
that every 100ms increase in the page load decreases sales by
1% [12]. In such cases, wide-range variations in response time
can lead to severe SLA violations.

In order to diagnose the causes for the wide-range re-
sponse time variations, we measured the utilization of various
resources in each component server of the system. Since
the browse-only workload of RUBBoS is CPU intensive, we
show the timeline graphs (with one second granularity) of
CPU utilization in Figure 3. During the execution of the WL
8,000, both Tomcat and MySQL show less than full CPU
utilization, with an average of 79.9% (Tomcat) and 78.1%
(MySQL). We also summarize the average usage of other main
hardware resources of each server in Table I. This table shows
that except for Tomcat and MySQL CPU, the other system
resources are far from saturation.

This example shows that monitoring hardware resource uti-
lization at one second granularity is insufficient at identifying
the cause of wide-range response time variations, since there
is no single saturated resource. Later in Section IV-C we
explain that the problem is due to the frequent transient bot-
tlenecks unintentionally caused by Intel SpeedStep technology
in MySQL. SpeedStep is designed to adjust CPU clock speed
to meet instantaneous performance needs while minimizing

1063232

(a) Average end-to-end response time and through-
put at each workload

(b) Percentage of requests with response time over
two seconds at each workload

0.1 0.5 1 1.5 2.0 2.5 3.0 3.5 > 4
10

0

10
2

10
4

10
6

Response time [s]

of

 c
om

pl
et

e
re

qu
es

ts

(c) Long-tail and bi-modal end-to-end response
time distribution at WL 8,000

Fig. 2: A case where the system response time shows wide-range variation far before the system reaches the maximum throughput. Figure 2(c)
shows the long-tail and bi-modal end-to-end response time distribution at WL 8,000, which indicates the unstable system performance.

Server/Resource
CPU util. Disk I/O Network receive/send

(%) (%) (MB/s)
Apache 34.6 0.1 14.3/24.1
Tomcat 79.9 0.0 3.8/6.5
CJDBC 26.7 0.1 6.3/7.9
MySQL 78.1 0.1 0.5/2.8

TABLE I: Average resource utilization in each tier at WL 8,000.
Except Tomcat and MySQL CPU, the other system resources are far
from saturation.

the power consumption of CPUs; however, the Dell’s BIOS-
level SpeedStep control algorithm is unable to adjust the CPU
clock speed quickly enough to match the bursty real-time
workload; the mismatch between CPU clock speed and real-
time workload causes frequent transient bottlenecks in MySQL
and leads to wide-range variations of system response time 1.

C. Trace Monitoring Tool

The previous example shows the necessity of detecting
transient bottlenecks in the system. Our approach is based on
passive network tracing, which can mitigate the monitoring
overhead while achieve high precision of detecting transient
bottlenecks in the system. In this section, we introduce our
monitoring tool, which we use in our transient bottleneck
detection method presented in the next section.

We use Fujitsu SysViz [2] to monitor the trace of transaction
executions in our experiments. Figure 4 shows an example
of such a trace (numbered arrows) of a client transaction
execution in a three-tier system. A client transaction services
an entire web page requested by a client and may consist of
multiple interactions between different tiers. SysViz is able
to reconstruct the entire trace of each transaction executed in
the system based on the interaction messages (odd-numbered
arrows) collected through network taps or network switches
which support passive network tracing. Since the timestamp of
each interaction message is recorded on one dedicated SysViz

1Transient bottlenecks cause instantaneous high concurrency in an n-tier
system; once the concurrency exceeds the thread limit in the web tier of the
system, new incoming requests will encounter TCP retransmissions, which
cause over 3s response times [22].

0 30 60 90 120 150 180
0

20

40

60

80

100

Timeline [s]

T
om

ca
t C

P
U

 u
til

 [%
]

App server CPU

0 30 60 90 120 150 180
0

20

40

60

80

100

Timeline [s]

M
yS

Q
L

C
P

U
 u

til
 [%

]

DB server cpu

Fig. 3: Tomcat and MySQL CPU utilization at WL 8,000; the average
is 79.9% and 78.1% respectively.

machine and independent of clock errors caused by limited
accuracy of NTP, the intra-node delay (small boxes with even-
numbered arrows) of every request in any server in the system
can be precisely recorded.

In fact the end-to-end transaction tracing has been studied
for many years and there are mainly two classes of imple-
mentations: annotation-based and black box. Most annotation-
based implementations [7] [8] [10] [18] rely on applications
or middleware to explicitly associate each interaction message
with a global identifier that stitches the messages within
a transaction together. Black-box solutions [3] [6] assume
there is no additional information other than the interaction
messages, and use statistical regression analysis to reconstruct
each transaction execution trace. SysViz belongs to the black-
box class. Experiments in our environment shows that SysViz
is able to achieve more than 99% accuracy of transaction
trace reconstruction for a 4-tier application even when the
application is under a high concurrent workload.

End-to-end transaction tracing in distributed systems has
passed the research stage. Reasearch continues on how to
best use the information provided by such tracing to diagnose
performance issues in the system.

1073333

(a) MySQL load measured at every 50ms time
interval in a 12-second time period. Frequent high
peaks suggest that MySQL presents short-term con-
gestions from time to time.

(b) MySQL throughput measured at every 50ms
time interval in the same 12-second time period as
in Figure 5(a).

(c) MySQL load vs. MySQL throughput in the
same 12-second time period as in Figure 5(a)
and 5(b); MySQL is temporarily congested once the
load exceeds N�.

Fig. 5: Performance analysis of MySQL using fine-grained load and throughput at WL 7,000. Figure 5(a) and 5(b) show the MySQL load
and throughput measured at the every 50ms time interval. Figure 5(c) is derived from 5(a) and 5(b); each point in Figure 5(c) represents the
MySQL load and throughput measured at the same 50ms time interval in the 12-second experimental time period.

Tomcat MySQLApache
1. HTTP
call

15. HTTP
return

...

... ...
...

...

...

tim
e

3. call
5. call

7. return

9. call

11. return
13. return

2
4

6

8

10

12
14

Fig. 4: Illustration of a transaction execution trace captured by SysViz

III. FINE-GRAINED LOAD/THROUGHPUT ANALYSIS

In this section, we first briefly show how our method
detects transient bottlenecks in an n-tier system using a simple
example. The details of each part of our method are in the
following subsections.

Since a bottleneck in an n-tier system is the place where
requests start to congest in the system, a key point of detecting
transient bottlenecks is to find component servers that fre-
quently present short-term congestions. To achieve this goal,
the first step of our method is to measure a server’s load
and throughput in continuous fine-grained time intervals. The
throughput of a server can be calculated by counting the
number of completed requests in the server in a fixed time
interval, which can be 50ms, 100ms, or 1s. Load is the average
number of concurrent requests over the same time interval 2.
Figure 5(a) and 5(b) shows the MySQL load and throughput
measured using a 50ms time interval over a 12-second time

2Given the precise arrival and departure timestamps of each request for a
server monitored through passive network tracing, the load and throughput of
the server can be calculated at any given time interval, more details are in
Section III-A and III-B

period for the 1L/2S/1L/2S configuration case at WL 7,000
(See the case in Figure 2). These two figures show that
both the MySQL load and throughput fluctuate significantly,
which indicates that MySQL frequently presents short-term
congestions.

To diagnose in which time intervals a server presents short-
term congestion, we need to correlate the server’s load and
throughput as shown in Figure 5(c). This figure is derived from
Figure 5(a) and Figure 5(b); each point in Figure 5(c) repre-
sents the MySQL load and throughput measured at the same
50ms time interval during the 12-second experimental time
period (i.e., in total 240 points). This figure shows a clear trend
of load/throughput correlation (main sequence curve), which is
consistent with Denning et al.’s [9] operational analysis result
for the relationship between a server’s load and throughput.
Specifically, a server’s throughput increases as the load on
the server increases until it reaches the maximum throughput
TPmax, which is determined by the average demand for the
bottleneck resource per job according to the Utilization Law.
The congestion point N� is the minimum load beyond which
the server starts to congest.

Once N� is determined, we can judge in which time
intervals the MySQL tier is congested based on the measured
load. For example, Figure 5(c) highlights three points labeled
1, 2, and 3, each of which represents the load/throughput in a
time interval that can match back to Figure 5(a) and 5(b). Point
2 shows that the MySQL tier is congested in the corresponding
time interval because the load far exceeds N�. Point 3 shows
that MySQL is not congested due to the zero load. Point 1
also shows that the MySQL tier is not congested because the
corresponding load is less than N� though it generates high
throughput.

After we apply the above analysis to each component
server of an n-tier system, we can detect which servers have
encountered frequent transient bottlenecks and cause the wide-
range response time variations of the system.

1083434

Timeline [ms]

n(t)

t
0 200

1
2
3

Lo
ad

[#
]

100

T T

request arrival
timestamp

request departure
timestamp

...

time

...

Fig. 6: Load calculation for a server based on the arrival/departure
timestamps of requests for the server

A. Load Calculation

For each server, our direct observables are the arriving (in-
put) requests and departing (output) responses with timestamps
generated at microsecond ticks. At each tick, we know how
many requests have arrived, but not yet departed. This is the
number of concurrent requests being processed by the server.
We define the server load as the average number of concurrent
requests over a time interval.

Figure 6 shows an example of load calculation for a server
in two consecutive 100ms time intervals. The upper part of this
figure shows the arrival/departure timestamps of the requests
received by the server, which are collected through passive
network tracing. Due to the multi-threaded architecture, re-
quests received by a server can be processed concurrently
as shown by the interleaved arrival/departure timestamps of
different requests. The bottom part of this figure shows the
number of concurrent requests being processed by the server
at each moment; thus the average in each time interval can be
calculated and used as the server load over the time interval.

B. Throughput Calculation

A straightforward approach to calculate throughput of a
server in each time interval is to count the number of fin-
ished requests during each time interval. This approach is
reasonable if a server processes only one class of requests
because the same class of requests can be assumed to have a
similar amount of demand for the bottleneck resource of the
server. Thus, the throughput calculated in each time interval
is comparable.

In typical applications including RUBBoS, the workload
on a server is mixed with multiple classes of requests each
having a different demand for the bottleneck resource of the
server. As the time interval length decreases (e.g. 50ms), the
request-mix distribution among time intervals becomes signif-
icantly different. Thus throughput values calculated (using the
straightforward way) in different time intervals are not directly
comparable because the requests that comprise the throughput
may have different demands for the bottleneck resource.

To calculate the throughput of a server under a mix-class
workload, we apply a throughput normalization technique
which transforms different classes of completed requests into

100ms 100ms
TW0 TW1

100ms
TW2

0.6 0.4 0.4Load

Req1: 30 ms
Req2: 10 ms

6 4 4Normalized throughput

Work unit: 10ms

request arrival
timestamp

request departure
timestamp

... ...

2 2 4Straightforward throughput

Fig. 7: Load/throughput calculation with mix-class workload

a certain number of comparable work units. 3. We define a
work unit as the greatest common divisor among the service
times from different classes of requests. Requests with a longer
service time can transform into a greater number of work units
while those with shorter service times only transform into a
smaller number. Since the normalized throughput in each time
interval only takes into account the transformed work units,
throughputs from different time intervals become compara-
ble. This throughput normalization technique is motivated by
the request canonicalization and clustering as introduced in
Barham et al.’s Magpie [7].

Figure 7 shows an example of the load and throughput
calculation under a mix with two classes of requests: Req1
and Req2 with service time 30ms and 10ms respectively. The
time interval length is 100ms. We set the work unit size as
10ms, so then Req1 transforms into 3 work units and Req2
transforms into 1 work unit. Thus, the server processes 6 work
units in TW0 and 4 in both TW1 and TW2. We can see that
in these three time intervals the normalized throughput has
a strong positive correlation with the load, which means the
server is not saturated based on Utilization Law. On the other
hand, the number of completed requests (the straightforward
throughput) has no correlation with the load in this case.

Service time approximation: The service time approxi-
mation for each class of requests is obtained using passive
network tracing. Figure 4 shows the intra-node delay (small
boxes in the figure) of each individual request in each server,
which can be treated as the service time if there is no queueing
effect. Thus, service time approximation for each class of
requests can be conducted online when the production system
is under low workload in order to mask out the queuing
effects inside a server [20]. Since the service time of each
class of requests may drift over time (e.g., due to changes
in the data selectivity) in real applications, such service time
approximations have to be recomputed accordingly.

C. Congestion Point N� Determination

In our method N� is used to classify a server’s performance
state in each time interval; however, the N� of a server is not
known a priori because the value depends on many factors

3For mix-class workload, we assume the demand for the bottleneck resource
of a server is proportional to the service time of a request. This assumption
is reasonable if a mix-class workload is one specific resource intensive in a
server (e.g., CPU). Then the service time can be approximated as CPU time.

1093535

(a) Monitoring time interval length 20ms

0 20 40 60 80
0

2000

4000

6000

8000

MySQL load [#]

M
yS

Q
L

th
ro

ug
hp

ut
 [r

eq
/s

]

(b) Monitoring time interval length 50ms (c) Monitoring time interval length 1s

Fig. 8: The impact of time interval length on load/throughput correlation analysis for MySQL at WL 14,000. Subfigure (a) (b), and (c) are
derived from the same 3-minute experimental data; thus there are 9,000 points with 20ms time interval, 3,600 points with 50ms time interval,
and 180 points with 1s time interval.

such as the server’s hardware/software configuration and also
the workload characteristics [23].

In practice we use a simple statistical intervention anal-
ysis [13] to approximate N�, where the main idea of this
analysis is to find the minimum load (N�) beyond which
the increments of throughput becomes negligible with further
increment of load. Suppose the load in a server varies between
[Nmin, Nmax]; then we divide [Nmin, Nmax] into k even
intervals (e.g., k = 100) and calculate the average throughput
in each load interval based on the load/throughput samples we
collected during the experimental period. Each load interval
and the corresponding average throughput is recorded as
{〈ld1, tp1〉, 〈ld2, tp2〉, ..., 〈ldk, tpk〉}, where ld1 < ld2 < ... <
ldk. Then the slope δi between every two consecutive load
intervals can be calculated as Equation 1:

δi =

⎧⎨
⎩
tp1/ ld1 : i = 1

tpi − tpi−1

ldi − ldi−1

: 1 < i ≤ k
(1)

tol ≤ δ − t(0.95,n0−1) ∗ s.d.{δ} (2)

δi should be nearly constant (e.g., δ0) when the server is
not saturated and starts to lose stability once the load exceeds
N�. The right side of Equation 2 shows a simple heuristic
approximation for the lower bound of a ninety percent con-
fidence interval of the sequence {δ1, δ2, ..., δn0} 4, where
1 < n0 ≤ k. We approximate N� as ldn0 when the lower
bound of the variation of the sequence {δ1, δ2, ..., δn0} is
below the pre-defined threshold tol (e.g., 0.2δ0).

D. Impact of Monitoring Time Interval Length

Both too short and too long a time interval length have side-
effects in detecting transient bottlenecks of a server. Though
a short time interval length can better capture the transient

4t(0.95,n0−1) is the coefficient for a 90 percent confidence interval when
a variable follows a t-distribution; δ = 1

n0

∑n0
i=1 δi and s.d.{δ} =√∑n0

i=1(δi − δ)2, which are the mean and the standard deviation of the
sequence {δ1, δ2, ..., δn0}, respectively.

variation of the load of a server, it decreases the precision
of the throughput calculation due to factors such as requests
with a lifespan crossing consecutive time intervals or the
errors caused by throughput normalization. For example, the
service time even for the same class of requests varies in
real applications (e.g., data selectivity changes). The average
service time for the same class of requests may not be
representative during throughput normalization due to too few
requests completed in a small time interval. On the other hand,
though a longer time interval length can average out the service
time variation for the same class of requests, it may lose the
ability to capture the short-term congestions of a server.

Figure 8(a), 8(b), and 8(c) show the load/throughput corre-
lation results of MySQL at workload 14,000 with 20ms, 50ms,
and 1s time interval length, respectively. Comparing these
three figures we can see that too long a time interval length
cannot capture the load/throughput variations, thus losing the
ability to detect transient bottlenecks (Figure 8(c)); too short
a time interval length blurs the shape of the expected main
sequence curve due to the increased errors of normalized
throughput (Figure 8(a)).

Note a proper time interval length for a server is workload
dependent (e.g., depends on the service time variation of each
class of requests for the server). In general a proper length
should be small enough to capture the short-term congestions
of a server. In the evaluation section we choose the time
interval length to be 50ms. An automatic way to choose a
proper time interval length is part of our future research.

IV. EVALUATION

In this section we show two case studies of applying our
method to detect transient bottlenecks caused by factors at
different levels (e.g., JVM GC at software level and Intel
SpeedStep at architecture level). For each case we also show
a solution to resolve the transient bottlenecks in the system.

A. Transient bottlenecks caused by JVM GC

The first case is the transient bottlenecks caused by frequent
JVM GCs in Tomcat. In the experiments of this subsection,

1103636

(a) Tomcat tier at WL 7,000 (b) Tomcat tier at WL 14,000 (c) Tomcat tier at WL 14,000

Fig. 9: Fine-grained load/throughput(50ms) analysis for Tomcat as workload increases. Subfigure 9(b) is derived from Subfigure 9(c), but
with 3-minute experimental data. Subfigure 9(b) shows that Tomcat frequently presents short-term congestion at WL 14,000.

(a) Tomcat load vs. Tomcat GC running ratio at WL 14,000; high GC
running ratio causes requests to congest in Tomcat.

(b) Tomcat load and system response time in the same time period
as in (a); long queue in Tomcat leads to high peak in response time.

Fig. 10: Fine-grained analysis for the large response time fluctuations of the system at WL 14,000. Figure 10(a) shows that frequent JVM
GCs cause transient bottlenecks (long queue) in Tomcat, which lead to large response time fluctuations as shown in Figure 10(b).

we use JDK 1.5 in Tomcat which has a synchronous garbage
collector; the inefficiency of this garbage collector frequently
causes transient bottlenecks in Tomcat and results in signifi-
cant fluctuations of system response time as we will show in
Figure 11(c).

Figure 9 shows the fine-grained load/throughput (50ms)
analysis for Tomcat at WL 7,000 and 14,000 with the hardware
configuration 1L/2S/1L/2S. Figure 9(a) shows that Tomcat
is not bottlenecked in most of the time intervals at WL
7,000 since only a few points are right after N� derived
from Figure 9(b). The interesting figure is Figure 9(b), which
shows that at WL 14,000 Tomcat frequently presents transient
bottlenecks. In particular, this figure shows there are many
points when Tomcat has a high load but low or even zero
throughput (POI inside the rectangular area), which contradicts
our expectation of the main sequence curve followed by a
server’s load and throughput.

To illustrate when these POIs happen, Figure 9(c) shows the
fine-grained timeline analysis of Tomcat load and throughput
in a 10s experimental period at WL 14,000. This figure clearly
shows in some time intervals the Tomcat load is high (e.g.,
the point labeled 4) but the corresponding throughput is zero,
which means that many requests are congested in Tomcat
but there are no output responses (throughput). In such time

intervals, the load/throughput pairs fall into the POI area as
shown in Figure 9(b).

Our further analysis shows that the POIs are caused by JVM
GCs that frequently stop Tomcat. In this set of experiments,
the JVM in Tomcat (JDK 1.5) uses a synchronous garbage
collector; it waits during the GC period and only starts
processing requests after the GC is finished. To confirm that
JVM GCs cause the frequent transient bottlenecks in Tomcat,
Figure 10(a) shows the timeline graph which correlates the
Java GC running ratio 5 with the Tomcat load. This figure
shows that the occurrence of Tomcat JVM GCs have a strong
positive correlation with the high peaks of load.

Figure 10(b) shows the correlation between the Tomcat load
and the system response time over the same 12-second time
period as in Figure 10(a). This figure shows that these two
metrics positively correlate with each other, which suggests
that the short-term congestions (high load) in Tomcat cause the
high peaks of system response time. Figure 10(a) and 10(b)
together show that frequent JVM GCs in Tomcat causes
frequent short-term congestions in Tomcat, which in turn cause
the significant variations on system response time.

5Java GC running ratio means the percentage of time spent on Java GC
in each monitoring time interval. JVM provides a logging function which
records the starting and ending timestamp of every GC activity.

1113737

(a) Tomcat tier at WL 14,000 (JDK 1.6 in Tocmat)

0 30 60 90 120 150 180
0

1

2

3

4

5

6

7

Timeline [s]

R
es

po
ns

e
T

im
e

[s
]

(b) System response time averaged in every 50ms
(JDK 1.6 in Tocmat)

0 30 60 90 120 150 180
0

1

2

3

4

5

6

7

Timeline [s]

R
es

po
ns

e
T

im
e

[s
]

(c) System response time averaged in every 50ms
(JDK 1.5 in Tocmat)

Fig. 11: Resolving transient bottlenecks by upgrading Tomcat JDK version from 1.5 to 1.6. Figure 11(a) shows that the frequent transient
bottlenecks in Tomcat as shown in Figure 9(b) are resolved. Thus, comparing Figure 11(b) and 11(c), the system response time presents
much less fluctuations.

B. Solution: upgrade JDK version in Tomcat

Once we detect the frequent transient bottlenecks in Tomcat,
we can resolve such bottlenecks by simply scaling-out/up the
Tomcat tier since low utilization of Tomcat can reduce the
negative impact of JVM GC [22]. Here we illustrate a more
economical way to solve the problem by just upgrading the
Tomcat JDK version from 1.5 to 1.6, which has more efficient
garbage collectors6. The experimental configurations are kept
the same as before except the Tomcat JDK version.

Figure 11(a) shows the fine-grained load/throughput corre-
lation analysis of Tomcat at workload 14,000 after upgrading
the Tomcat JDK version. This figure shows that Tomcat no
longer presents frequent transient bottlenecks compared to
Figure 9(b). Specifically, the POIs in Figure 9(b) do not appear
in Figure 11(a), which means the Tomcat JVM does not have
long “freezing” periods after we upgrade the Tomcat JDK.

Figure 11(b) and 11(c) show the average system response
time measured at every 50ms time intervals in the 3-minute
experimental period before and after we upgrade Tomcat JDK
version. These two figures show that the large response time
fluctuations disappear after the JDK version upgrade, which
shows that the system performance becomes more stable after
we resolve the frequent transient bottlenecks in Tomcat.

C. Transient bottlenecks caused by Intel SpeedStep

The second case is the use of Intel SpeedStep technology
which unintentionally causes transient bottlenecks, leading to
the wide-range response time variations as we showed in
Section II-B. Intel SpeedStep allows the clock speed of a
CPU to be dynamically adjusted (to different P-states) based
on the real-time computing demands on a server in order
to achieve a good balance between power usage and server
performance; however, we found that the Dell’s BIOS-level
SpeedStep control algorithm cannot adjust the CPU clock
speed quickly enough to match the real-time workload once

6JDK 1.6 uses garbage collection algorithms which support both parallel
and concurrent garbage collection while JDK 1.5 by default uses a serial,
stop-the-world collector.

P-state P0 P1 P4 P5 P8
CPU clock [MHz] 2261 2128 1729 1596 1197

TABLE II: Partial P-states supported by the Xeon CPU of our
machines

the workload becomes bursty; the mismatch between CPU
clock speed and real-time workload causes frequent transient
bottlenecks that lead to the long-tail response time distribution
as shown in Figure 2(c).

We enable the Intel SpeedStep support for MySQL in the
BIOS settings to illustrate the mismatch problem. Table II
shows a part of the P-states supported by our experimental
machine CPU. This table shows that the CPU clock speed
of the lowest P-state (P8) is nearly half of the highest P-
state (P0). The experiments described here still keep the same
1L/2S/1L/2S configuration as in the previous sections with
the only difference being the change in BIOS settings. We
note that in all of the previous experiments, we disable the
SpeedStep support in the BIOS settings of all our machines
to simplify our analyses.

Figure 12 shows the fine-grained load/throughput analy-
sis for MySQL at WL 8,000 and 10,000. As illustrated in
Figure 2(c), the system already presents wide-range response
time variations at WL 8,000. Such variations are caused
by the frequent transient bottlenecks in MySQL as shown
in Figure 12(a). The interesting observation in Figure 12(a)
is that though MySQL presents one main throughput trend
(about 3700 req/s) when the load exceeds N�, there are many
points above the main throughput trend, which contradicts our
expectation of the shape of the main sequence curve. The
comparison between Figure 12(a) and 12(b) reveals the cause.
Since workload 8000 is relatively low, MySQL prefers to stay
in P8-state in order to save power; however, MySQL is not
responsive enough to scale-up to higher P-states to handle peak
request rates from the upstream tiers in the system and thus
presents short-term congestions as shown in Figure 12(a). As
workload increases to 10,000, Figure 12(b) shows that MySQL
throughput presents three clear trends (about 3700 req/s, 5000

1123838

(a) MySQL tier at WL 8,000 (b) MySQL tier at WL 10,000 (c) MySQL tier at WL 10,000

Fig. 12: Fine-grained load/throughput(50ms) analysis for MySQL when CPU SpeedStep is enabled in MySQL. Figure 12(b) is derived from
Figure 12(c), with 3-minute experimental data. Figure 12(a) shows one throughput trend when MySQL is temporarily bottlenecked, which
indicates that MySQL chooses the lowest CPU clock speed when the workload is low. Figure 12(b) shows three throughput trends, which
indicates that MySQL alternates among three CPU frequencies supported by Intel CPU SpeedStep as workload increases to 10,000.

(a) MySQL at WL 8,000 (b) MySQL at WL 10,000

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

M
yS

Q
L

lo
ad

 [#
]

Timeline [s]

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

M
yS

Q
L

th
ro

ug
hp

ut
 [r

eq
/s

]

MySQL load MySQL throughput

(c) MySQL at WL 10,000

Fig. 13: Fine-grained load/throughput(50ms) analysis for MySQL when CPU SpeedStep is disabled in MySQL. Since MySQL always chooses
to stay in the maximum CPU clock speed, the frequency of transient bottlenecks is significantly reduced by comparing Figure 13(a) and 13(b)
with Figure 12(a) and 12(b).

req/s, and 7000 req/s) when the corresponding load exceeds
N�, which indicates that MySQL CPU alternates among three
different P-states. For instance, the points labeled 5, 6, 7 show
three time intervals when MySQL is temporarily congested but
produces different throughputs. Point 5 indicates that MySQL
stays in the lowest P8-state, point 6 indicates that MySQL
stays in either P4- or P5-state, and point 7 indicates that
MySQL stays in P0-state.

To illustrate when the mismatch of CPU clock speed and
the real-time load on MySQL happens, Figure 12(c) shows the
fine-grained MySQL load and throughput in a 10s experimen-
tal period at WL 10,000. The points labeled 5, 6, 7 correspond
to the highlighted points in Figure 12(b), and show that in
these three time intervals MySQL is temporarily congested
but generates different throughputs. This figure illustrates the
time lag of MySQL scaling-up to higher P-states, which causes
frequent transient bottlenecks in MySQL.

D. Solution: Disable Intel SpeedStep in BIOS

Once detecting the frequent transient bottlenecks caused by
the mismatch between CPU clock speed and bursty workload,
we can resolve such bottlenecks by disabling the SpeedStep
support in MySQL and let MySQL always stay in P0-state.

Figure 13 shows the fine-grained load/throughput analysis
for MySQL at WL 8,000 and 10,000 after we disable the
SpeedStep support in MySQL. Figure 13(a), 13(b) and 13(c)
match back to Figure 12(a), 12(b) and 12(c), respectively.
Since MySQL CPU always stays in P0-state, both Figure 13(a)
and 13(b) show that MySQL only presents one throughput
trend when load exceeds N�. More importantly, Figure 13(a)
and 13(b) show that MySQL presents much less transient
bottlenecks compared to the case shown in Figure 12(a)
and 12(b) at WL 8,000 and 10,000. Figure 13(c) also shows
that MySQL load is below N� most of the time at WL
10,000, which suggests more stable performance of the system
compared to Figure 12(c).

Further reduction of the transient bottlenecks in MySQL
needs to either scale-out the MySQL tier (add more nodes
to the MySQL tier) or scale-up MySQL (switch to a more
powerful CPU).

V. RELATED WORK

Techniques based on end-to-end request-flow tracing have
been proposed in previous research for performance anomaly
diagnosis. Magpie [7] and Pinpoint [8] focus on identifying
anomalous requests that either have long response times or

1133939

mutations of request-flow path by finding rare paths that differ
greatly from others. Pip [16] identifies anomalous requests by
comparing request-flows from actual behaviors and developer-
expected behaviors. Spectroscope [17] proposes a similar mon-
itoring infrastructure as Pip, but instead of comparing request-
flows between actual behaviors and developer-expected behav-
iors, it compares request-flows between “problem” periods and
“non-problem” periods. Though detecting anomalous requests
gives very useful hints to diagnose performance problem, they
may fail to diagnose the root cause of anomalous requests in
an n-tier system. A “anomalous” request may be slow not
because of its own behavior, but because other requests were
queued ahead of it [18], [22].

Analytical models have been proposed for bottleneck de-
tection and performance prediction of n-tier systems. Ur-
gaonkar [21] present a flexible queueing model for an n-
tier application that determines how much resources to al-
locate to each tier of the application for the target system
response time; however, this model is based on Mean Value
Analysis (MVA), which has difficulties dealing with wide-
range response time variations caused by bursty workloads
and transient bottlenecks in the system. Mi et al. [14] propose
a more sophisticated analytical model that predicts system
performance based on bursty workloads. One challenge of
this work is to precisely map the bursty characteristics of a
workload to the queueing model with multiple service rates
for each queue in the system. As shown in this paper, without
fine-grained monitoring (sub-second level) granularity, the
bursty characteristics of a workload and the potential transient
bottlenecks as a result can be largely masked.

Software mis-configuration and failure detection of dis-
tributed system have been studied in [4], [5], [15]. Attariyan
et al. [4], [5] present a tool that locates the root cause of
configuration errors by applying dynamic information flow
analysis within a process (mainly) during runtime. Oliveira et
al. [15] propose a mistake-aware management framework for
protecting n-tier systems against operator mistakes by using
the previous correct operations. All these works differ from
our work in that they focus on faulty/anomalous behavior of
system components rather than the performance problem.

VI. CONCLUSION

We observed that the performance of an n-tier system may
degrade significantly due to transient bottlenecks in component
servers in the system. We proposed a novel bottleneck detec-
tion method to detect these transient bottlenecks (Section III),
where the effectiveness of our approach is validated through
the two case studies in Section IV. We found that transient
bottlenecks can be caused by various factors at different levels
of an n-tier application; for instance, JVM GC at the software
level (Section IV-A) and Intel SpeedStep at the architec-
ture level (Section IV-C). Solving these transient bottlenecks
leads to significant performance improvements (Section IV-B
and IV-D). More generally, our work is an important contribu-
tion towards scaling complex n-tier applications under elastic
workloads in cloud environments.

VII. ACKNOWLEDGEMENT

This research has been partially funded by National Sci-
ence Foundation by IUCRC/FRP (1127904) , CISE/CNS
(1138666), RAPID (1138666), CISE/CRI (0855180), NetSE
(0905493) programs, and gifts, grants, or contracts from
DARPA/I2O, Singapore Government, Fujitsu Labs, Wipro
Applied Research, and Georgia Tech Foundation through the
John P. Imlay, Jr. Chair endowment. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation or other funding
agencies and companies mentioned above.

REFERENCES

[1] RUBBoS: Bulletin board benchmark. ”http://jmob.ow2.org/rubbos.html”,
2004.

[2] Fujitsu SysViz: Visualization in the Design and Operation of Efficient
Data Centers. ”http://globalsp.ts.fujitsu.com/dmsp/Publications/
public/E4 Schnelling Visualization%20in%20the%20Design%20and%
20Operation%20of%20Efficient%20Data%20Centers.pdf”, 2010.

[3] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging for distributed systems of black
boxes. In SOSP ’03.

[4] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In OSDI’12.

[5] M. Attariyan and J. Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In OSDI’10.

[6] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In SIGCOMM’07.

[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for
request extraction and workload modelling. In OSDI’04.

[8] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
problem determination in large, dynamic internet services. In DSN’02.

[9] P. J. Denning and J. P. Buzen. The operational analysis of queueing
network models. ACM Comput. Surv., 1978.

[10] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: a
pervasive network tracing framework. In NSDI’07.

[11] E. C. Julie, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible
Database Clustering Middleware. 2004.

[12] R. Kohavi and R. Longbotham. Online experiments: Lessons learned.
IEEE Computer’07.

[13] S. Malkowski, M. Hedwig, J. Parekh, and C. Pu. Bottleneck detection
using statistical intervention analysis. In DSOM’07.

[14] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Burstiness in multi-tier
applications: symptoms, causes, and new models. In Middleware ’08.

[15] F. Oliveira, A. Tjang, R. Bianchini, R. P. Martin, and T. D. Nguyen.
Barricade: defending systems against operator mistakes. EuroSys ’10.

[16] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat. Pip: Detecting the unexpected in distributed systems. In
NSDI’06.

[17] R. Sambasivan, A. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. Ganger. Diagnosing performance
changes by comparing request flows. In NSDI’10.

[18] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. In Google Technical report’10.

[19] B. Snyder. Server virtualization has stalled, despite the hype. InfoWorld,
2010.

[20] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
analytical model for multi-tier internet services and its applications. In
SIGMETRICS’05.

[21] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic provi-
sioning of multi-tier internet applications. In ICAC’05.

[22] Q. Wang, Y. Kanemasa, M. Kawaba, and C. Pu. When average is not
average: Large response time fluctuations in n-tier systems. In ICAC’12.

[23] Q. Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe, P. Xiong,
M. Kawaba, L. Harada, and C. Pu. The impact of soft resource allocation
on n-tier application scalability. In IPDPS’11.

1144040

